Navigating the AI landscape Fostering Responsible AI with AI Governance - Saxon AI
AI and ML / October, 19 2023

Navigating the AI Landscape: Fostering Responsible AI with AI Governance 

We have all heard the buzz about generative AI and its poised to be a game changer. Is it truly going to skyrocket our businesses and productivity? With Large Language Models such as Open AI Chat GPT, Google Bard, and many more LLMs, the future of artificial intelligence and automation is auspicious. After all, generative AI can potentially revolutionize how we work, live, analyze, and interact. This buzz has resulted in an increased sense of urgency among business leaders to harness this transformative AI into their work or be left behind in the race. I hate to be a buzzkill, but is it as golden as it looks? In this blog, let us understand how we can foster responsible AI in the age of LLMs with apt AI governance in place. 

Gen AI comes with a lot of power and responsibility

As Uncle Ben in Spiderman had quoted,” With great power comes great responsibility.” the same applies in the case of harnessing generative AI as well. Gen AI has immense advantages, such as instant churning out texts and images, giving enterprises analytical insights, and streamlining and optimizing processes – which are all valuable in this fast-paced, competitive world fed by innovation. However, there are certain pitfalls that enterprises need to acknowledge and address before charting out the path of Gen AI. 

Jumping on the AI bandwagon 

According to recent research, 67% of senior IT leaders focus on incorporating Gen AI into their business strategies within the next 18 months, with 33% considering it their top priority. However, at the same time, most of these senior IT leaders have apprehensions about the potential implications. 59% of them believe that the outputs are inaccurate, and 79% are concerned about security.

What can possibly go wrong? 

Training data of LLM matters

Many of the issues with Artificial Intelligence stem from poor training data. If the data set that the LLM is trained on is inaccurate or has biases, the results will inevitably mirror them. Moreover, humans are gullible most of the time, and when AI answers with confidence, we tend to accept it without question. For instance, if Gen AI says Henry the Eighth was the king who beheaded all his wives, we accept that answer since we don’t know the exact history. Instead, we believe that it is invariably correct since Gen AI knows and has been trained on the right data sets. This is a fundamental issue with computers that even the founding mainframe programmers had realized early when they coined the acronym GIGO, meaning ‘garbage in, garbage out.’ 

Critical AI-based decision-making based on poor training data 

Similarly, there can be catastrophic consequences too. Who will be accountable if an enterprise makes decisions based on AI-generated data that has resulted in heavy financial losses? In critical sectors such as finance or healthcare, if enterprises rely solely on AI-driven decision-making that goes unchecked or backed by poor data quality, it can be a recipe for disaster. 

IP loss, bias, data privacy and security 

Artificial Intelligence, including large language models (LLM), poses several challenges that enterprises must carefully consider before integrating them or broadly deploying them within the organization. Concerns such as data privacy, intellectual property loss, bias, security, and an array of other issues loom for organizations that jump on the generative AI bandwagon pushed by their boards and C-suites.

Model collapse 

A new issue has emerged from LLMs- that is, model collapse. It is a very genuine and serious threat that researchers warn unsuspecting AI victims about. In simple terms, when AI models are trained on AI-generated data- model collapse is most likely to happen due to the surging amount of AI-generated content being produced through the Large Language Models(LLM)

Let us consider the analogy of photocopying. The first copy is mostly accurate and of decent quality. However, as you replicate a copy multiple times, the result becomes a fuzzy, unrecognizable mess. That is similar to model collapse. The AI model loses its essence, prioritizes higher probability outcomes, and decreases or even erases unlikely events. This completely nullifies the model’s original data distribution and intent, making the model no longer useful. 

AI Governance is of utmost importance 

As we saw in the above circumstances, it is clear that the quality and integrity of the data that is used to train the AI model is a crucial factor. Equally important are the policies and standards applied to govern this data. 

Having AI Governance processes in place 

Processes that aim towards ensuring model assessment and benchmarking are also pivotal for each Large Language Model. These processes enable us to identify potential problems and expedite necessary corrective actions when required. Moreover, model users should be able to flag issues, such as biased results, policy infringements, wrong responses, performance discrepancies, etc. Individuals should be assigned to the model responsible for resolving these concerns following predefined protocols. 

Human-in-the-loop (HITL) is necessary

Complete reliance on the AI model as a result is not advisable. Organizations should adopt a ‘human-in-the-loop’ (HITL) approach, where humans review and validate the outcomes before integrating them into business operations or making critical business decisions based on them. This HITL approach guarantees accuracy and mitigates potential risks related to sole reliance on AI-generated outputs. 

How to implement AI Governance? 

AI models are essentially data-driven products aiming to deliver value, boost productivity, and provide a competitive advantage. What is the point of investing in AI models if they don’t fulfill these objectives? They require constant nurturing, validation, and ongoing updates to stay effective. Proper governance is paramount to ensure their optimal performance.  

Making AI governance a foundational element of an organization’s AI strategy is essential. Since AI runs on data, it should be integral to your broader data governance initiative. Enterprises can follow a simple yet efficient AI governance framework

Start with defining your use case

What will be the model’s purpose? What data will power the model- whether it is human-generated or AI-generated? Addressing these questions is crucial to define the results, evaluate the risks, and assign ownership and responsibility. 

Identifying and understanding data 

The ability to validate and trust the data upfront puts you on a path toward success and minimizes the likelihood of issues such as model collapse. This process also checks whether the use of the data in connection with the use case is legally permissible, 

Document and track the model and its results

Documenting the model’s results is vital to understanding the output, mainly to check if the results are logical and unbiased. Collecting this data will support model analysis and reporting and achieve the results required for the use case. It can also help you track and report to regulators if required. 

Verify and monitor your model continuously 

AI governance is not a single-time project; rather, it is an ongoing process. Regularly assessing outcomes, updating data for retraining, and striving for continuous improvement of the model are part of the process. With this framework, enterprises can mitigate the risks related to AI and experience fast and increased value. 

Data intelligence is key to ensuring governance

Documentation, evaluation, and monitoring of the data products that fuel the models form the foundation of AI governance. Data intelligence capabilities play a crucial role at every stage of this framework. Since data drives AI, having AI governance within the broader enterprise data governance plan is essential. 

Responsible AI – now and gearing up for the times ahead 

Responsible AI should encompass more than just assuring privacy, safety, and fairness- it should explicitly ensure the highest data quality within the model and prevent issues like model collapse without any exceptions. The role of human interference in responsible AI is paramount, as model accuracy and ethical consideration will always require human oversight. The final decision regarding when and how to use AI will always be a human’s call. 

If data is the gold, then human-made data will most likely be the diamonds everyone will pursue. At present, the norm is still human-created data sources, but in the future, AI-generated data may dominate the landscape. Taking proactive steps to implement AI governance and understanding your data’s nuances will ultimately make the difference between success and failure in the times ahead. 

You can follow us on LinkedIn and Medium to never miss an update.

Get in Touch


Stay up-to-date with our latest news, updates, and promotions by subscribing to our newsletter.

Copyright © 2008-2023 Saxon. All rights reserved | Privacy Policy

Address: 1320 Greenway Drive Suite # 660, Irving, TX 75038

Archana Aila

Archana Aila

Position Here

With 2 years of hands-on experience in Power Platform, I’ve excelled in developing and implementing solutions for businesses, harnessing the power of Power Apps, Power Automate, Power BI, and Power Virtual Agents to streamline processes and enhance productivity. My proficiency extends to crafting custom applications, automating workflows, generating data insights, and creating chatbots to aid operational efficiency and data-driven decision-making.

With an intermediate knowledge in Azure cognitive services, incorporating them into Power Platform use cases to innovate and solve complex challenges. My expertise in client engagement and requirements gathering, coupled with effective team coordination, ensures on-time, high-quality project deliveries. These efforts have yielded significant accomplishments, solidifying my role as a valuable asset in this field.

Akash Jakkidi

Akash Jakkidi

Position Here

I am committed to resolving complicated business difficulties into simplified, user-friendly solutions, and I have extensive experience in Power Apps development. I thrive in integrating cutting-edge technology to optimise process efficiency, leveraging intermediate knowledge in Azure, Cognitive Services, and Power BI. My interest is developing dynamic apps within the Power Apps ecosystem to help organisations achieve operational excellence and data-driven insights.

As a tech enthusiast, my passion for innovation leads me to constantly explore new ideas and push the frontiers of what is possible, assuring significant contributions to our technological world.

Palak Intodia

Palak Intodia

Position Here

I am a tech graduate with a strong passion for technology and innovation. With three years of experience in the IT industry, I’ve been on a continuous journey of professional growth and skill development. My expertise lies in Power Apps and Automate, where I’ve had the privilege of contributing to multiple successful projects.

I’m dedicated to delivering results that not only meet expectations but also drive the success of the projects I’m involved in. I’m committed to my ongoing professional development and the pursuit of excellence.


Roshan Jaiswal

Position Here

With nearly 2 years of dedicated experience in Power Platform technology, my expertise lies in crafting customized business solutions using Power Apps and Power Automate. I excel in identifying intricate business requirements and translating them into innovative, user-friendly applications. My daily tasks involve meticulously deploying applications across diverse environments and harnessing the full potential of the Microsoft ecosystem within business applications.

I have proven my adaptability by consistently meeting the demands of creating responsive and scalable applications. Also seamlessly integrating complex workflows and data sources, ultimately enhancing operational efficiency and driving sustainable business growth.


Sugandha Chawla

Position Here

Sugandha is a seasoned technocrat and a full stack developer, manager, and lead. Having 8 years of industry experience, she has been able to build excellent working relationships with all her customers, successfully establishing repeat business, from almost all of them. She has worked with renowned giants like Infosys, Ernst & Young, Mindtree and Tech Mahindra.

She has very diverse and enriching work experience, having worked extensively on Microsoft Power Platform, .NET, Angular, Azure, Office 365, SQL. Her distinctiveness lies in the profound domain knowledge, managerial skills, and process mastery, that she additionally holds, as a result of possessing a customer facing role, working with different sectors, and managing and driving numerous critical executions, single-handedly, end to end.

Vibhuti Dandhich

Vibhuti Dadhich

Position Here

Vibhuti, a Power Platform technology evangelist, has passionately embraced the transformative potential of low-code development. With a background that includes experience at EY and Wipro, she’s been a trusted advisor for clients seeking innovative solutions. Her expertise in unraveling complex business challenges and crafting tailored solutions has propelled organizations to new heights.

Vibhuti’s commitment to staying at the forefront of technological advancements and her forward-thinking approach have solidified her as an industry thought leader. Her mission is to empower businesses to thrive in the digital age, revolutionizing operations through the Power Platform.

Ruturaj Kulkarni

Ruturaj Kulkarni

Position Here

With 8 years of dedicated expertise in the IT realm, I am a seasoned professional specializing in .NET technologies and Microsoft Azure Cloud. My journey encompasses a profound understanding of software development using the .NET framework and a robust command over Azure’s cloud ecosystem. Throughout my career, I’ve demonstrated a knack for crafting scalable and efficient solutions, leveraging the power of cloud computing.

My passion lies in staying at the forefront of technological advancements, ensuring that my skills align seamlessly with the dynamic landscape of IT. Ready to tackle challenges and drive innovation, I bring a wealth of experience to any project or team.

Sija Kuttan

Sija Kuttan

Vice President - Sales

Sija.V. K is a distinguished sales leader with a remarkable journey that spans over 15 years across diverse industries. Her expertise is a fusion of capital expenditure (CAPEX) machinery sales and the intricacies of cybersecurity.

Currently serving as the Vice President of Sales at Saxon AI, Sija adeptly navigates market dynamics, client acquisition, and channel management. Her distinguished track record of nurturing strong relationships, leading diverse teams, and driving growth underscores her as an adaptable and seasoned sales professional.

Gopi Kandukuri

Gopi Kandukuri

Chief Executive Officer

Gopi is the President and CEO of Saxon Inc since its inception and is responsible for the overall leadership, strategy, and management of the Company. As a true visionary, Gopi is quick to spot the next-generation technology trends and navigate the organization to build centers of excellence.

As a digital leader responsible for driving company growth and ROI, he believes in a business strategy built upon continuous innovation, investment in core capabilities, and a unique partner ecosystem. Gopi has served as founding member and 2018 President of ITServe, a non-profit organization of all mid-sized IT Services organization in US.

Vineesha Karri

Vineesha Karri

Associate Director - Marketing

Meet Vineesha Karri, the driving force behind our marketing endeavors. With over 12+ years of experience and a robust background in the B2B landscape across the US, EMEA, and APAC regions, she is pivotal in setting up high-performance marketing teams that drive business growth through a transformation based on new-age marketing practice.

Beyond her extensive experience driving business success across Digital, Data, AI, and Automation technologies, Vineesha’s diverse skill set shines as she collaborates with varied stakeholders across hierarchies, cultivating a harmonious and results-driven workspace.

Sridevi Edupuganti

Sridevi Edupuganti

Vice President – Cloud Solutions

Sridevi Edupuganti is an innovative leader known for strategically enhancing business opportunities through technology planning, orchestrating roadmaps, and guiding technology architecture choices. With a rich career spanning over two decades as a Senior Business and Technology Executive, she has driven teams to empower customers for digital transformation.

Her leadership fosters democratized digital experiences across enterprises. She has successfully expanded service portfolios globally, including major roles at Microsoft, NTT Data, Tech Mahindra. Proficient in diverse database technologies and Cloud platforms (AWS, Azure), she excels in operational excellence. Beyond her professional achievements, Sridevi also serves as a Health & Wellness coach, impacting IT professionals positively through engaging sessions.

Joel Jolly

Joel Jolly

Vice President – Technology

Joel has over 18 years of diverse global experience and multiple leadership assignments across Big 4 consulting, IT services and product engineering. He has distinguished himself by providing strategic vision and leadership for solving common industry problems on cutting-edge technologies.

As a leader surfacing and operationalizing next-generation ideas, he was responsible for exploring new technology directions, articulating a long-term technical vision, developing effective engineering processes, partnering with key stakeholders to build a strong internal and external brand and recruiting, mentoring, and growing great talent.

Haricharan Mylaraiah

Haricharan Mylaraiah

Senior Vice President - Strategy, Offerings & Sales Enablement

Hari is a Digital Marketer and Digital transformation specialist. He is adept at cultivating strong executive and customer relationships, utilizing data across all interactions (customers, employees, services, products) to lead cross-functionally as a strategic thought partner to install discipline, process, and methodology into a scalable company-wide customer-centric model.

He has 18+ years experience in Customer Acquisition, Product Strategy, Sales & Pre-Sales Management, Customer Success, Operations Management He is a Mechanical Engineering Graduate with MBA in International Business and Information Technology.