Applied AI is a rose – understand the thorny challenges- Saxon AI
AI and ML / October, 26 2023

Applied AI is a rose – understand the thorny challenges. 

Applied AI – the application of AI technology in business, is skyrocketing. An Accenture report on AI revealed that 84% of business executives believe that AI adoption would drive their business growth. Applied AI empowers businesses with end-to-end process automation and continuous process improvement for greater productivity and profitability. However, applied AI is like a rose garden. AI-powered business applications are enticing, but you should be aware of the thorns surrounding the flowers. You need to use frameworks such as Responsible AI while embracing AI for your business. You should understand potential risks such as adversarial attacks and data poisoning. Understanding these concepts will help you address common hiccups in AI adoption for business before they choke your initiatives. 

Responsible AI 

Artificial intelligence is powerful. When used responsibly, AI can be a solution to many problems and change the world. It can be the biggest problem to society when used otherwise. Training AI models on incomplete, faulty data sets leads to biased and inaccurate performance. For example, a biased AI system used in the hiring process can reject applicants based on their gender and race. The unethical use of AI can compromise the privacy of individuals by mishandling sensitive personal data or conducting surveillance without consent. Such instances erode the trust of people in organizations using Artificial Intelligence. 

Responsible AI refers to the ethical and responsible development, deployment, and use of AI systems. It includes a set of principles, practices, and guidelines aimed at creating AI systems that align with human values and legal and regulatory compliance. In 2016, tech giants Microsoft, Amazon, Google, IBM, and Meta (then Facebook), came together to create a framework around AI governance. The framework suggests five key principles – fairness, accountability, transparency, privacy, and safety.  


Fairness refers to the need to ensure that AI algorithms do not discriminate against individuals or groups based on attributes such as race, gender, age, or socioeconomic status. This principle involves designing AI algorithms and data sets in a way that avoids bias and advocates equitable outcomes for all users. 


Accountability means that there should be clear lines of responsibility and ownership for AI systems and their decisions. Developers, organizations, and users should be accountable for the actions and consequences of AI systems, and mechanisms should be in place to address errors or harms. 


Transparency involves making the operations and decision-making processes of AI systems understandable and explainable to users and stakeholders. It means providing insights into how AI systems reach conclusions or make predictions, which can help build trust and facilitate human oversight. 


Privacy in AI pertains to safeguarding individuals’ personal data and ensuring that AI systems handle data responsibly and in compliance with data protection laws. It involves data anonymization, consent mechanisms, and secure data storage and transmission to protect individuals’ privacy. 


Safety in AI focuses on ensuring that AI systems operate securely and reliably. It includes measures to prevent AI systems from causing harm, whether intentionally or unintentionally. Safety also encompasses robustness against adversarial attacks and the ability to handle unexpected situations. 

Applied AI blog- internal image

Although these principles can vary from organization to organization. At the end of the day, your AI model should advocate fairness and transparency without bias and inaccuracies. 

Explainable AI (XAI)

One way to ensure the implementation of responsible AI is to impart explainability to the AI model. The explainability of an AI model answers some important questions such as – What data does the AI model use? How does the model arrive at its decision? An average human being should be able to interpret these answers. We call this ability of AI systems as explainable AI (XAI). 

XAI helps organizations implement AI systems built on the principles of fairness, accountability, and transparency. This will help organizations establish digital trust among their customers. Digital trust is crucial for industries that directly impact customers’ lives. For example, healthcare. Suppose you built an AI model for diagnosis. Doctors wouldn’t be ready to adopt your model until they know how the AI model comes to a conclusion. Because wrong decisions by the AI model can impact the life of a patient and cost a fortune for the doctors. Explainability of your AI model can help you gain the trust of doctors. They can analyze the diagnosis process and use the information to make informed decisions. 

Typically, AI models are built in black box format. However, predictions or decisions made by black box models are hard to explain. AI developers themselves find it challenging to analyze the decision process, let alone common business users. On the other hand, white box models offer general data such as: 

  • The criteria used in decision making. 
  • Why the model made a particular decision. 
  • The type of errors the model is prone to, ways to correct the errors. 

These insights help you identify adversarial attacks on the AI model. An adversarial attack is an attempt to misguide an AI model through malicious data inputs into making wrong or inaccurate decisions. By looking into the irregular explanations provided by the model for its decisions, you can identify an attack and correct the model. The insights by explainable AI also help you eliminate bias in your AI model. 

Adversarial attacks

In Artificial Intelligence (AI)/ ML, adversarial attacks are deliberate attempts to manipulate the behavior of a model by feeding it malicious data. Adversarial attacks exploit vulnerabilities in AI systems, leading to incorrect predictions. They can cause disasters in safety-critical applications, like autonomous vehicles or medical diagnosis. These attacks can also leak sensitive personal information or training data. 

Source: [1412.6572] Explaining and Harnessing Adversarial Examples ( 

Adversarial attacks can be categorized as white-box or black-box attacks. In a white-box attack, the attacker has access to the architecture and parameters of the target AI model. In a black-box attack, the attacker has limited or no information about the target model. However, the attacker can still craft adversarial examples through trial and error. 

An adversarial attacker might want to force an AI model to produce a specific incorrect output. For example, misclassifying an image of a cat as a dog. Such attacks are targeted attacks. In non-targeted attacks, the attacker doesn’t have a specific target in mind, but the goal is to make the AI model produce incorrect output. 

Privacy-preserving AI  

Privacy-preserving AI refers to the use of artificial intelligence (AI) techniques and technologies while protecting the privacy of individuals and the confidentiality of their data. The primary goal of privacy-preserving AI is to enable AI systems to function effectively and provide valuable insights without compromising the personal or sensitive information of individuals. 
Privacy-preserving AI is particularly important in applications dealing with sensitive data. For example, healthcare, finance, and personal assistants. It helps organizations comply with data protection regulations (e.g., GDPR) and builds trust with users who are concerned about the security of their data. 
To achieve privacy-preserving AI, you need to ensure the privacy of four key aspects: 

  • Training data- assuring the privacy of training data helps prevent attackers from performing reverse-engineering on the training data. 
  • Input – other parties, including model creators, cannot see the input data provided by users.  
  • Output – make sure the output produced by the model is not seen by others. 
  • Model – protect the AI model so that attackers cannot steal it. 

Data poisoning

Data poisoning is a malicious technique used to manipulate the training data of a machine learning model with the intent of degrading its performance or causing it to make incorrect predictions. In data poisoning attacks, adversaries inject tainted or malicious data points into the training dataset, hoping to influence the model’s learned patterns and decision boundaries. These attacks can compromise the integrity and reliability of AI and machine learning systems. 
Attackers can perform data poisoning in several ways, such as by infusing infected data, contaminating algorithms, data manipulation, and logic corruption. 

Manipulated AI models can become security risks, as attackers might exploit the models to make incorrect decisions or bypass security measures. Poisoned models might inadvertently reveal sensitive information about individuals, especially if the training data includes personal data. Successful data poisoning attacks can erode trust in AI and machine learning systems, as users may lose confidence in the model’s reliability. 

Want to embrace applied AI for your business? 

AI adoption for business is a complex process. From choosing the right AI model to managing data to ensuring seamless integration of the model into existing workflows, each step of implementing applied AI for your business requires careful considerations and technical expertise. This is where you need a trusted technology partner like Saxon AI

With our expertise in applied AI strategy and implementation, we empower businesses to unlock the full potential of AI, optimizing operations and driving innovation. Let us be your guide on this transformative journey towards a smarter, more efficient future. Contact us now

You can follow us on LinkedIn and Medium to never miss an update.

Get in Touch


Stay up-to-date with our latest news, updates, and promotions by subscribing to our newsletter.

Copyright © 2008-2023 Saxon. All rights reserved | Privacy Policy

Address: 1320 Greenway Drive Suite # 660, Irving, TX 75038

Archana Aila

Archana Aila

Position Here

With 2 years of hands-on experience in Power Platform, I’ve excelled in developing and implementing solutions for businesses, harnessing the power of Power Apps, Power Automate, Power BI, and Power Virtual Agents to streamline processes and enhance productivity. My proficiency extends to crafting custom applications, automating workflows, generating data insights, and creating chatbots to aid operational efficiency and data-driven decision-making.

With an intermediate knowledge in Azure cognitive services, incorporating them into Power Platform use cases to innovate and solve complex challenges. My expertise in client engagement and requirements gathering, coupled with effective team coordination, ensures on-time, high-quality project deliveries. These efforts have yielded significant accomplishments, solidifying my role as a valuable asset in this field.

Akash Jakkidi

Akash Jakkidi

Position Here

I am committed to resolving complicated business difficulties into simplified, user-friendly solutions, and I have extensive experience in Power Apps development. I thrive in integrating cutting-edge technology to optimise process efficiency, leveraging intermediate knowledge in Azure, Cognitive Services, and Power BI. My interest is developing dynamic apps within the Power Apps ecosystem to help organisations achieve operational excellence and data-driven insights.

As a tech enthusiast, my passion for innovation leads me to constantly explore new ideas and push the frontiers of what is possible, assuring significant contributions to our technological world.

Palak Intodia

Palak Intodia

Position Here

I am a tech graduate with a strong passion for technology and innovation. With three years of experience in the IT industry, I’ve been on a continuous journey of professional growth and skill development. My expertise lies in Power Apps and Automate, where I’ve had the privilege of contributing to multiple successful projects.

I’m dedicated to delivering results that not only meet expectations but also drive the success of the projects I’m involved in. I’m committed to my ongoing professional development and the pursuit of excellence.


Roshan Jaiswal

Position Here

With nearly 2 years of dedicated experience in Power Platform technology, my expertise lies in crafting customized business solutions using Power Apps and Power Automate. I excel in identifying intricate business requirements and translating them into innovative, user-friendly applications. My daily tasks involve meticulously deploying applications across diverse environments and harnessing the full potential of the Microsoft ecosystem within business applications.

I have proven my adaptability by consistently meeting the demands of creating responsive and scalable applications. Also seamlessly integrating complex workflows and data sources, ultimately enhancing operational efficiency and driving sustainable business growth.


Sugandha Chawla

Position Here

Sugandha is a seasoned technocrat and a full stack developer, manager, and lead. Having 8 years of industry experience, she has been able to build excellent working relationships with all her customers, successfully establishing repeat business, from almost all of them. She has worked with renowned giants like Infosys, Ernst & Young, Mindtree and Tech Mahindra.

She has very diverse and enriching work experience, having worked extensively on Microsoft Power Platform, .NET, Angular, Azure, Office 365, SQL. Her distinctiveness lies in the profound domain knowledge, managerial skills, and process mastery, that she additionally holds, as a result of possessing a customer facing role, working with different sectors, and managing and driving numerous critical executions, single-handedly, end to end.

Vibhuti Dandhich

Vibhuti Dadhich

Position Here

Vibhuti, a Power Platform technology evangelist, has passionately embraced the transformative potential of low-code development. With a background that includes experience at EY and Wipro, she’s been a trusted advisor for clients seeking innovative solutions. Her expertise in unraveling complex business challenges and crafting tailored solutions has propelled organizations to new heights.

Vibhuti’s commitment to staying at the forefront of technological advancements and her forward-thinking approach have solidified her as an industry thought leader. Her mission is to empower businesses to thrive in the digital age, revolutionizing operations through the Power Platform.

Ruturaj Kulkarni

Ruturaj Kulkarni

Position Here

With 8 years of dedicated expertise in the IT realm, I am a seasoned professional specializing in .NET technologies and Microsoft Azure Cloud. My journey encompasses a profound understanding of software development using the .NET framework and a robust command over Azure’s cloud ecosystem. Throughout my career, I’ve demonstrated a knack for crafting scalable and efficient solutions, leveraging the power of cloud computing.

My passion lies in staying at the forefront of technological advancements, ensuring that my skills align seamlessly with the dynamic landscape of IT. Ready to tackle challenges and drive innovation, I bring a wealth of experience to any project or team.

Sija Kuttan

Sija Kuttan

Vice President - Sales

Sija.V. K is a distinguished sales leader with a remarkable journey that spans over 15 years across diverse industries. Her expertise is a fusion of capital expenditure (CAPEX) machinery sales and the intricacies of cybersecurity.

Currently serving as the Vice President of Sales at Saxon AI, Sija adeptly navigates market dynamics, client acquisition, and channel management. Her distinguished track record of nurturing strong relationships, leading diverse teams, and driving growth underscores her as an adaptable and seasoned sales professional.

Gopi Kandukuri

Gopi Kandukuri

Chief Executive Officer

Gopi is the President and CEO of Saxon Inc since its inception and is responsible for the overall leadership, strategy, and management of the Company. As a true visionary, Gopi is quick to spot the next-generation technology trends and navigate the organization to build centers of excellence.

As a digital leader responsible for driving company growth and ROI, he believes in a business strategy built upon continuous innovation, investment in core capabilities, and a unique partner ecosystem. Gopi has served as founding member and 2018 President of ITServe, a non-profit organization of all mid-sized IT Services organization in US.

Vineesha Karri

Vineesha Karri

Associate Director - Marketing

Meet Vineesha Karri, the driving force behind our marketing endeavors. With over 12+ years of experience and a robust background in the B2B landscape across the US, EMEA, and APAC regions, she is pivotal in setting up high-performance marketing teams that drive business growth through a transformation based on new-age marketing practice.

Beyond her extensive experience driving business success across Digital, Data, AI, and Automation technologies, Vineesha’s diverse skill set shines as she collaborates with varied stakeholders across hierarchies, cultivating a harmonious and results-driven workspace.

Sridevi Edupuganti

Sridevi Edupuganti

Vice President – Cloud Solutions

Sridevi Edupuganti is an innovative leader known for strategically enhancing business opportunities through technology planning, orchestrating roadmaps, and guiding technology architecture choices. With a rich career spanning over two decades as a Senior Business and Technology Executive, she has driven teams to empower customers for digital transformation.

Her leadership fosters democratized digital experiences across enterprises. She has successfully expanded service portfolios globally, including major roles at Microsoft, NTT Data, Tech Mahindra. Proficient in diverse database technologies and Cloud platforms (AWS, Azure), she excels in operational excellence. Beyond her professional achievements, Sridevi also serves as a Health & Wellness coach, impacting IT professionals positively through engaging sessions.

Joel Jolly

Joel Jolly

Vice President – Technology

Joel has over 18 years of diverse global experience and multiple leadership assignments across Big 4 consulting, IT services and product engineering. He has distinguished himself by providing strategic vision and leadership for solving common industry problems on cutting-edge technologies.

As a leader surfacing and operationalizing next-generation ideas, he was responsible for exploring new technology directions, articulating a long-term technical vision, developing effective engineering processes, partnering with key stakeholders to build a strong internal and external brand and recruiting, mentoring, and growing great talent.

Haricharan Mylaraiah

Haricharan Mylaraiah

Senior Vice President - Strategy, Offerings & Sales Enablement

Hari is a Digital Marketer and Digital transformation specialist. He is adept at cultivating strong executive and customer relationships, utilizing data across all interactions (customers, employees, services, products) to lead cross-functionally as a strategic thought partner to install discipline, process, and methodology into a scalable company-wide customer-centric model.

He has 18+ years experience in Customer Acquisition, Product Strategy, Sales & Pre-Sales Management, Customer Success, Operations Management He is a Mechanical Engineering Graduate with MBA in International Business and Information Technology.