Fraud Detection Machine Learning
Insurance, Technology / February, 28 2022

Fraud Detection using Advanced Machine Learning for E-commerce and Financial Services

How many of you refrained from online shopping during the pandemic? No, every one of us preferred shopping for clothes, electronics, household items, groceries, and everything using mobile or the web. Digital fraud on the banking and financial services platforms, e-commerce, and healthcare also rose significantly with the pandemic. The increased use of mobile for different transactions was the impetus for these fraudulent activities.

The impact and growth of fraud

The cost of fraud for organizations is not just monetary but other significant risks like losing the customer. As per LexisNexis risk solutions, each dollar of fraud loss now costs US financial services organizations $4.0, and this has increased significantly compared to 2019 and 2020. Did the pandemic impact fraud? As per the Association of Certified Fraud Examiners 2021 report, 51% of organizations uncovered more fraud during the pandemic.

Payment fraud, identity fraud, and email phishing – are the main fraud activities that may increase significantly over the next decade. As per research firm Javelin, identity fraud caused $56bn losses to US financial services organizations in 2020.

How to combat fraud?

Traditionally, rule-based systems detected fraud using a few evident signals. Usually written by fraud analysts, these systems consider around 300 rules to approve a transaction. Also, these systems used legacy software which may not suit real-time data and large datasets. Most importantly, the rules were updated manually and implicit correlation according to the scenarios is very hard.

Machine learning-based fraud detection resolves these challenges by creating algorithms that can analyze the hidden behavior of the users. Behavior analytics correlated with many variables from large datasets helps organizations analyze user behavior and identify fraudulent activities.

Fraud Detection with Machine Learning – Benefits

Fraud Detection Machine Learning algorithms learn from the historical data patterns and apply them to recognize fraud in future transactions. Also, the ability of ML algorithms exceeds human ability to detect sophisticated fraud activities.

Massive data processing – Humans struggle to understand vast amounts of data and analyze the patterns. The more data the Fraud Detection Machine Learning model receives, the better it can understand the data and analyze the fraud activities.

Faster and accurate – Data analysis is done in seconds once the ML model suitable for the business needs sets the action. Furthermore, the accuracy of ML models is far better than humans, and better predictions are possible with machine learning.

Scalable – Machine Learning methods offer better performance with the growth in datasets. Though the model needs constant updates as fraudsters regularly find ways, the risk and efficiency are far better than rule-based systems.

Fraud Detection Solutions in Financial Services and E-Commerce

The most prevalent fraud activities in E-commerce and Financial Services – are payment fraud, email phishing, and identity theft. Payment fraud is about card-not-present transactions that occur in a variety of forms. Usually tackled by ML models, the direct and indirect transactions are analyzed with anomaly detection techniques and neural networks. Let us get into more details about the fraud across industries.

1. Insurance claims fraud detection

According to a survey from Friss, the insurance fraud to claims ratio almost doubled during the pandemic, while it was 10% earlier. Though insurers spend a lot of effort in claims processing, the fraud ratio increased. Custom ML models and a good dataset can help in Insurance claims fraud detection.

Fake claims – It is possible to detect fake claims by analyzing structured and unstructured data using semantic analysis. The textual, social media, and external data analysis provide more hidden clues than the rule-based systems.

Overstating costs in claims – Any inconsistencies in repair costs and duplicate claims may go unnoticed by claims analysts. Smart insurance claims fraud detection models analyze the historical data to identify deviations and uncover hidden correlations in previous claims records.

2. Online fraud detection and mitigation – E-commerce

As online shopping increases, so is fraud. Online fraud detection models leverage behavioral analytics to identify identity theft or merchant scams.

Identity theft – The fraudster breaches the user account, modifies personal information, and uses the same to purchase goods or exchange money in the most common identity fraud. Customers most often consider this a security vulnerability of E-commerce websites, and organizations may face trust losses. Online fraud detection models usually uncover unusual activity and personal information changes leveraging behavior analytics.

Merchant scams – A few merchants provide fake reviews to attract customers to buy their products. Often this leads to customers shifting to other e-commerce options. Sentiment analysis, text mining, and behavioral analytics can eliminate the influence of such fraudulent activities and redirect them to trusted merchants.

3. Banking – Loans and credit card fraud detection

Though Banks follow a strict due diligence process, they are susceptible to payment fraud. Personal details counterfeiting and misrepresentation lead to loan and credit card frauds.

Credit card fraud detection – Stolen cards, account takeover, and personal information hijacking from online transactions often lead to large sums of fraudulent activity. Anomaly detection and neural networks are efficient in credit card fraud detection.

Loan Processing – Though sophisticated credit scoring models are available; information misrepresentation is quite common in loan applications. Apart from the conventional credit scoring models, you can now leverage ML models to analyze unstructured data from utility bills, social media, and monthly spending to arrive at customized credit scoring.

A few Fraud Detection Machine Learning Systems

Anomaly Detection – Classifying data into normal distribution and outliers helps identify any fraudulent transaction. As the ML models evolve, the data set can include images, unstructured texts, and structured financial data. This approach seems more straightforward, but additional steps are needed to identify suspicious transactions. There are more advanced ML approaches to reduce uncertainty.

Supervised Machine Learning – These leverages labeled historical data to train the ML model and mark the transaction as fraudulent. Consider the case of email phishing; an equal number of fraudulent emails with fake URLs and legitimate emails are leveraged to train the model. Furthermore, there are more methods involved in Supervised Machine Learning. Let us look at a few of them.

  1. Random Forests – This algorithm builds decision trees to classify the data as fake or legitimate. The model leverages a variable that can best split the data records, and the process is repeated multiple times. Data scientists can understand the consensus judgment about fraud as per the trees vote. Most importantly, this model is simple to understand and used with different data types.
  2. K-Nearest Neighbors – The algorithm is based on similar classified records and their distance in multidisciplinary space. Each new record is assigned to the cluster of nearest neighbors. It is common to analyze credit card transactions and is insensitive to missing data.
  3. Neural Networks – The algorithm structure looks like that of the human brain neurons. This model allows determining non-linear relations between the data records. The input data usually passes through several hidden layers to provide more accurate results. Additionally, this can work on unstructured data – text, and images and at high accuracy. Neural networks are most applied to transaction data and insurance claims processing.

Unsupervised Machine Learning – These methods work on raw data to search and find correlations without any data labeling, unlike supervised machine learning. Supervised Machine Learning models offer more accurate predictions, while Unsupervised Machine Learning models involve less time.

Though we discussed a few common ML models, the choice of the right machine learning algorithm depends on the challenge, datasets, etc. Most importantly, antifraud systems require large datasets and essential data science skills.

Are you looking for in-depth technology and domain expertise? Our experts can help you with advanced ML models. Contact us for more information.

Get in Touch

Newsletter

Stay up-to-date with our latest news, updates, and promotions by subscribing to our newsletter.

Copyright © 2008-2023 Saxon. All rights reserved | Privacy Policy

Address: 1320 Greenway Drive Suite # 660, Irving, TX 75038

Archana Aila

Archana Aila

Position Here

With 2 years of hands-on experience in Power Platform, I’ve excelled in developing and implementing solutions for businesses, harnessing the power of Power Apps, Power Automate, Power BI, and Power Virtual Agents to streamline processes and enhance productivity. My proficiency extends to crafting custom applications, automating workflows, generating data insights, and creating chatbots to aid operational efficiency and data-driven decision-making.

With an intermediate knowledge in Azure cognitive services, incorporating them into Power Platform use cases to innovate and solve complex challenges. My expertise in client engagement and requirements gathering, coupled with effective team coordination, ensures on-time, high-quality project deliveries. These efforts have yielded significant accomplishments, solidifying my role as a valuable asset in this field.

Akash Jakkidi

Akash Jakkidi

Position Here

I am committed to resolving complicated business difficulties into simplified, user-friendly solutions, and I have extensive experience in Power Apps development. I thrive in integrating cutting-edge technology to optimise process efficiency, leveraging intermediate knowledge in Azure, Cognitive Services, and Power BI. My interest is developing dynamic apps within the Power Apps ecosystem to help organisations achieve operational excellence and data-driven insights.

As a tech enthusiast, my passion for innovation leads me to constantly explore new ideas and push the frontiers of what is possible, assuring significant contributions to our technological world.

Palak Intodia

Palak Intodia

Position Here

I am a tech graduate with a strong passion for technology and innovation. With three years of experience in the IT industry, I’ve been on a continuous journey of professional growth and skill development. My expertise lies in Power Apps and Automate, where I’ve had the privilege of contributing to multiple successful projects.

I’m dedicated to delivering results that not only meet expectations but also drive the success of the projects I’m involved in. I’m committed to my ongoing professional development and the pursuit of excellence.

Roshan

Roshan Jaiswal

Position Here

With nearly 2 years of dedicated experience in Power Platform technology, my expertise lies in crafting customized business solutions using Power Apps and Power Automate. I excel in identifying intricate business requirements and translating them into innovative, user-friendly applications. My daily tasks involve meticulously deploying applications across diverse environments and harnessing the full potential of the Microsoft ecosystem within business applications.

I have proven my adaptability by consistently meeting the demands of creating responsive and scalable applications. Also seamlessly integrating complex workflows and data sources, ultimately enhancing operational efficiency and driving sustainable business growth.

Sugandha

Sugandha Chawla

Position Here

Sugandha is a seasoned technocrat and a full stack developer, manager, and lead. Having 8 years of industry experience, she has been able to build excellent working relationships with all her customers, successfully establishing repeat business, from almost all of them. She has worked with renowned giants like Infosys, Ernst & Young, Mindtree and Tech Mahindra.

She has very diverse and enriching work experience, having worked extensively on Microsoft Power Platform, .NET, Angular, Azure, Office 365, SQL. Her distinctiveness lies in the profound domain knowledge, managerial skills, and process mastery, that she additionally holds, as a result of possessing a customer facing role, working with different sectors, and managing and driving numerous critical executions, single-handedly, end to end.

Vibhuti Dandhich

Vibhuti Dadhich

Position Here

Vibhuti, a Power Platform technology evangelist, has passionately embraced the transformative potential of low-code development. With a background that includes experience at EY and Wipro, she’s been a trusted advisor for clients seeking innovative solutions. Her expertise in unraveling complex business challenges and crafting tailored solutions has propelled organizations to new heights.

Vibhuti’s commitment to staying at the forefront of technological advancements and her forward-thinking approach have solidified her as an industry thought leader. Her mission is to empower businesses to thrive in the digital age, revolutionizing operations through the Power Platform.

Ruturaj Kulkarni

Ruturaj Kulkarni

Position Here

With 8 years of dedicated expertise in the IT realm, I am a seasoned professional specializing in .NET technologies and Microsoft Azure Cloud. My journey encompasses a profound understanding of software development using the .NET framework and a robust command over Azure’s cloud ecosystem. Throughout my career, I’ve demonstrated a knack for crafting scalable and efficient solutions, leveraging the power of cloud computing.

My passion lies in staying at the forefront of technological advancements, ensuring that my skills align seamlessly with the dynamic landscape of IT. Ready to tackle challenges and drive innovation, I bring a wealth of experience to any project or team.

Sija Kuttan

Sija Kuttan

Vice President - Sales

Sija.V. K is a distinguished sales leader with a remarkable journey that spans over 15 years across diverse industries. Her expertise is a fusion of capital expenditure (CAPEX) machinery sales and the intricacies of cybersecurity.

Currently serving as the Vice President of Sales at Saxon AI, Sija adeptly navigates market dynamics, client acquisition, and channel management. Her distinguished track record of nurturing strong relationships, leading diverse teams, and driving growth underscores her as an adaptable and seasoned sales professional.

Gopi Kandukuri

Gopi Kandukuri

Chief Executive Officer

Gopi is the President and CEO of Saxon Inc since its inception and is responsible for the overall leadership, strategy, and management of the Company. As a true visionary, Gopi is quick to spot the next-generation technology trends and navigate the organization to build centers of excellence.

As a digital leader responsible for driving company growth and ROI, he believes in a business strategy built upon continuous innovation, investment in core capabilities, and a unique partner ecosystem. Gopi has served as founding member and 2018 President of ITServe, a non-profit organization of all mid-sized IT Services organization in US.

Vineesha Karri

Vineesha Karri

Associate Director - Marketing

Meet Vineesha Karri, the driving force behind our marketing endeavors. With over 12+ years of experience and a robust background in the B2B landscape across the US, EMEA, and APAC regions, she is pivotal in setting up high-performance marketing teams that drive business growth through a transformation based on new-age marketing practice.

Beyond her extensive experience driving business success across Digital, Data, AI, and Automation technologies, Vineesha’s diverse skill set shines as she collaborates with varied stakeholders across hierarchies, cultivating a harmonious and results-driven workspace.

Sridevi Edupuganti

Sridevi Edupuganti

Vice President – Cloud Solutions

Sridevi Edupuganti is an innovative leader known for strategically enhancing business opportunities through technology planning, orchestrating roadmaps, and guiding technology architecture choices. With a rich career spanning over two decades as a Senior Business and Technology Executive, she has driven teams to empower customers for digital transformation.

Her leadership fosters democratized digital experiences across enterprises. She has successfully expanded service portfolios globally, including major roles at Microsoft, NTT Data, Tech Mahindra. Proficient in diverse database technologies and Cloud platforms (AWS, Azure), she excels in operational excellence. Beyond her professional achievements, Sridevi also serves as a Health & Wellness coach, impacting IT professionals positively through engaging sessions.

Joel Jolly

Joel Jolly

Vice President – Technology

Joel has over 18 years of diverse global experience and multiple leadership assignments across Big 4 consulting, IT services and product engineering. He has distinguished himself by providing strategic vision and leadership for solving common industry problems on cutting-edge technologies.

As a leader surfacing and operationalizing next-generation ideas, he was responsible for exploring new technology directions, articulating a long-term technical vision, developing effective engineering processes, partnering with key stakeholders to build a strong internal and external brand and recruiting, mentoring, and growing great talent.

Haricharan Mylaraiah

Haricharan Mylaraiah

Senior Vice President - Strategy, Offerings & Sales Enablement

Hari is a Digital Marketer and Digital transformation specialist. He is adept at cultivating strong executive and customer relationships, utilizing data across all interactions (customers, employees, services, products) to lead cross-functionally as a strategic thought partner to install discipline, process, and methodology into a scalable company-wide customer-centric model.

He has 18+ years experience in Customer Acquisition, Product Strategy, Sales & Pre-Sales Management, Customer Success, Operations Management He is a Mechanical Engineering Graduate with MBA in International Business and Information Technology.