Future of Data Engineering
Technology / June, 06 2022

Future of Data Engineering

Data engineering is the base for every successful data-driven company. All the activity we perform on the internet has data as the derivative. While there is a constant watch on how the field of data engineering is shaping up, there appears to be a grey spot in what the future holds. 

Estimates show the world will have created and stored 200 Zettabytes of data by 2025. While few organizations are aware of the trends, there is a constant debate on the future of data engineering. What benefits an organization better? How does data engineering seep into other processes?

As a fast-growing space, data engineering is about collecting, transforming, and extracting valuable insights from the data. Data engineering is a cumulative term that involves a series of processes. While 80% of the processes are of data analytics and 20% are of data science, where we drive insights using tools and technologies. Data engineers and data scientists play a significant role in making a company data-driven. Specifically, Data engineers build and maintain data infrastructures, and data scientists get the insights. Upon the onset of a robust data foundation, data science and its charm of predictions, recommendations, etc., come into play.

For this reason, data engineering will continue to boom as more technologies are emerging in creating pipelines, building database systems, and much more. Business leaders believe that artificial intelligence (AI) and Machine learning (ML) tools and techniques will help them reduce the costs and efforts involved in data engineering. Zach Wilson says improvements in data engineering have helped data engineers simplify hundreds of codes to dozens of lines with SQL.

The present is all about distributed cloud computing. What will be the future? Let us craft a picture to foresee the trends in data engineering.

Data will become accessible, avoiding silos:

Data silos might not seem like a challenge when looking at individual processes; however, it looks more complex considering the holistic view of how the data flows internally.

It creates unforeseen bottlenecks in sharing information across the organization, eventually leading to data inconsistency and quality issues. There arises a situation for critical stakeholders to skim through different reports to get a holistic perspective leading to effective decisions.

Centralization of data is made possible with cloud computing. AI and ML techniques combined with SQL can help organizations break data silos by automating the operational processes and streamlining the required data to the respective teams. We can approach centralized data accessible across the organization with improved and well-designed data governance.

Data will become a product:

Data has become a significant element across all processes over the last decade. Organizations are aware of the benefits they experience when data quality is accurate and reflects reality. With better tools and a clear understanding of data’s true potential, organizations should start to treat data as a product.

Data as a product is how data teams can churn out true value out of the organizational data wealth. It involves the refinement of existing knowledge and information and sieving them through different processes to extract meaningful reality. 

Data processes are well designed to maintain the quality of the product and meet organizational needs. The final product is often an improvised version of the native state. In due course of time, data has become a prime commodity for enterprises to gain competitive advantage and profits.

How to approach data as a product?

  1. Align with your internal customers – your stakeholders.

When data is your product, your stakeholders are your internal customers. Begin your journey by crafting a data product roadmap aligning with organizational objectives, deriving SLA, and following the roadmap.

  1. Approach the data with a product management mindset.

One of the most prominent issues organizations face today is when they approach the growth phase, their data model gets messed up as they focus on building services first and then the data. Organizations can avoid this mess when they start to treat data as a product. A strategic approach with a product management mind will help organizations efficiently build, monitor, and measure data products.

  1. Take advantage of self-serving tools.

Self-service tooling helps non-technical teams easily access the data, avoiding data silos. Organizations can focus on other innovative projects than fulfilling the ad-hoc requests from teams requesting data. The tooling will improve with better efficiency and reliability in the coming years. 

  1. Prioritize data quality and reliability.

One significant component of approaching data as a product is maintaining the quality of the data by applying standards of rigor to the data ecosystem. Organizations should try to maintain data quality and reliability throughout the lifecycle of the data. Setting clear SLAs, SLIs, and SLOs to measure data quality will help organizations move towards automated and scalable data reliability.

  1. Know the structure of your data organization.

Organizations have critical data challenges and a defined cultural landscape. A hub and spoke model will help the teams deliver business needs quickly and efficiently without compromising data quality and governance.

Data breaches between teams will shrink:

Organizations have already solved challenges in storing, moving and visualizing data. The following more prominent issue that organizations should solve is self-serve analytics. Solving this issue will help them bridge the gap between the data producers and data consumers.

Data teams will diversify:

Organizations will see significant growth in data engineering in the coming years, and the data teams will become broader. As the investment in the data teams has increased drastically, data analysts and data engineers are performing multiple tasks. With the increasing investment, the data teams are becoming more evident that they will specialize in focusing on specific functions. These specific functions will open the door to new roles and responsibilities. 

Data gap and the collective debt will shrink:

With organizations becoming more data-driven, the interlude between data producers and consumers will eventually reduce. Every investment toward self-service analytics and modernization will be instrumental in shrinking the gap in data consumption.

All the efforts toward effectively storing, managing, and retrieving data for further visualization will enhance the data quality and reduce the request spillover.

Takeaway

Data engineering deals with laying a foundation for a robust data ecosystem involving organized data flow across applications and systems. Data is a wise investment every organization makes to become more productive and profitable. The core of every data process must be designed strategically to match the organization’s needs and objectives. More data will get added to the current organizational wealth in years to come.

Enterprises should take the necessary steps immediately to initiate data modernization activities. Failing to do so, the road ahead might become more challenging and complex. If the core is not strengthened now, it will be a challenging game in the future.

Looking for data engineering services? Check this out

Get in Touch

Newsletter

Stay up-to-date with our latest news, updates, and promotions by subscribing to our newsletter.

Copyright © 2008-2023 Saxon. All rights reserved | Privacy Policy

Address: 1320 Greenway Drive Suite # 660, Irving, TX 75038

We Help Enterprises Achieve Their Transformation Goals

Request a callback

Saxon AI

Address:  1320 Greenway Drive Suite # 660, Irving, TX 75038 United States.
Phone: +1 972 550 9346
Mail: info@saxon.ai

Sija Kuttan

Sija Kuttan

Vice President - Sales

Sija.V. K is a distinguished sales leader with a remarkable journey that spans over 15 years across diverse industries. Her expertise is a fusion of capital expenditure (CAPEX) machinery sales and the intricacies of cybersecurity.

Currently serving as the Vice President of Sales at Saxon AI, Sija adeptly navigates market dynamics, client acquisition, and channel management. Her distinguished track record of nurturing strong relationships, leading diverse teams, and driving growth underscores her as an adaptable and seasoned sales professional.

Gopi Kandukuri

Gopi Kandukuri

Chief Executive Officer

Gopi is the President and CEO of Saxon Inc since its inception and is responsible for the overall leadership, strategy, and management of the Company. As a true visionary, Gopi is quick to spot the next-generation technology trends and navigate the organization to build centers of excellence.

As a digital leader responsible for driving company growth and ROI, he believes in a business strategy built upon continuous innovation, investment in core capabilities, and a unique partner ecosystem. Gopi has served as founding member and 2018 President of ITServe, a non-profit organization of all mid-sized IT Services organization in US.

Vineesha Karri

Vineesha Karri

Associate Director - Marketing

Meet Vineesha Karri, the driving force behind our marketing endeavors. With over 12+ years of experience and a robust background in the B2B landscape across the US, EMEA, and APAC regions, she is pivotal in setting up high-performance marketing teams that drive business growth through a transformation based on new-age marketing practice.

Beyond her extensive experience driving business success across Digital, Data, AI, and Automation technologies, Vineesha’s diverse skill set shines as she collaborates with varied stakeholders across hierarchies, cultivating a harmonious and results-driven workspace.

Sridevi Edupuganti

Sridevi Edupuganti

Vice President – Cloud Solutions

Sridevi Edupuganti is an innovative leader known for strategically enhancing business opportunities through technology planning, orchestrating roadmaps, and guiding technology architecture choices. With a rich career spanning over two decades as a Senior Business and Technology Executive, she has driven teams to empower customers for digital transformation.

Her leadership fosters democratized digital experiences across enterprises. She has successfully expanded service portfolios globally, including major roles at Microsoft, NTT Data, Tech Mahindra. Proficient in diverse database technologies and Cloud platforms (AWS, Azure), she excels in operational excellence. Beyond her professional achievements, Sridevi also serves as a Health & Wellness coach, impacting IT professionals positively through engaging sessions.

Joel Jolly

Joel Jolly

Vice President – Technology

Joel has over 18 years of diverse global experience and multiple leadership assignments across Big 4 consulting, IT services and product engineering. He has distinguished himself by providing strategic vision and leadership for solving common industry problems on cutting-edge technologies.

As a leader surfacing and operationalizing next-generation ideas, he was responsible for exploring new technology directions, articulating a long-term technical vision, developing effective engineering processes, partnering with key stakeholders to build a strong internal and external brand and recruiting, mentoring, and growing great talent.

Haricharan Mylaraiah

Haricharan Mylaraiah

Senior Vice President - Strategy, Offerings & Sales Enablement

Hari is a Digital Marketer and Digital transformation specialist. He is adept at cultivating strong executive and customer relationships, utilizing data across all interactions (customers, employees, services, products) to lead cross-functionally as a strategic thought partner to install discipline, process, and methodology into a scalable company-wide customer-centric model.

He has 18+ years experience in Customer Acquisition, Product Strategy, Sales & Pre-Sales Management, Customer Success, Operations Management He is a Mechanical Engineering Graduate with MBA in International Business and Information Technology.